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Abstract

This paper presents the results of a thorough user study that was performed to assess some features and the general
usefulness of Semantic Depth of Field (SDOF). Based on these results, concrete hints are given on how SDOF can
be used for visualization. SDOF was found to be a very effective means for guiding the viewer’s attention and for
giving him or her a quick overview of a data set. It can also very quickly be perceived, and therefore provides an
efficient visual channel.

Semantic Depth of Field is a focus+context (F+C) technique that uses blur to point the user to the most relevant
objects. It was inspired by the depth of field (DOF) effect in photography, which serves a very similar purpose.

Categories and Subject Descript¢ascording to ACM CCS) 1.3.36 [Computer Graphics]: Methodology and Tech-
nigues; H.5.2 [Information Interfaces and Presentation]: User Interfaces

1. Introduction 1.1. Semantic Depth of Field (SDOF)

Semantic Depth of Field (SDO¥J is a focus+context
(F+C) technique that uses selective blur to make less impor-
tant objects less prominent, and thus point out the more rele-
vant parts of the display to the user (e.g., certain chess figures
in Figure 1). It is based on the depth of field (DOF) effect
known from photography and cinematographyhich de-
picts objects sharply or blurred depending on their distance

Like few other areas in computer science, visualization in-
volves the user as the most important part. No matter how
good a visualization technique is in terms of its computa-
tional cost, its clever design, or the pretty pictures it pro-
duces - if it does not convey information to the user effi-
ciently and effortlessly, it is useless. Visualization therefore
Iaqks elegaIlt., formal [')’roofs for its m.ethods, and |nsteaq re- from the lens. This is used to guide the viewer’s attention,
quires the “dirty work” of user studies and psychological . ) . o .
. - nd is quite effective and intuitive. SDOF extends this effect
tests to asses which methods and techniques are useful, ancé’1 . . . .
. . . o decide for every object whether to display it sharply or
which are not. Such studies have been neglected in the past, -
. blurred, not based on geometry, but on the object’s current
but the awareness of the need of proper evaluation of meth-
. . relevance.
ods is slowly growing 5 10,

We measure blur as the diameter of a circle over which
This paper reports the results of a study that was per- the information from one pixel is spread when it is blurred.
formed to evaluate a new method called Semantic Depth of Thus, a blur diameter of 1 means a perfectly sharp image,
Field. We also present conclusions we drew about how and with larger values creating more and more blurred depic-
where this method can be used. tions.
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Because blur is generally known to be slow in computer
graphics, we developed a fast implementation that uses tex-
ture mapping on commodity graphics hardvfaemake in-
teractive applications possible on state-of-the-art PCs.

1.2. Study Goals

The overall goal of the study was to find out if SDOF is
an effective means of guiding the user’s attention, and if it
supports the user in applications.

Effectiveness was assessed in two ways: a) by testing the
ability to preattentively (i.e., very quickly and without serial
search, see Section 3) detect and locate objects, as well as es-
timate the percentage of sharp objects; and b) by comparing
search times for different cues, i.e., sharpness versus color

and orientation (Section 4), and also checking for the inter- Figyre 1: Chess board application, with the chessmen

play between SDOF and those other cues. We also tested thehreatening the knight on €3 in focus (from Kosara et)al.
thresholds necessary to tell different blur levels apart, and

also the blur levels necessary for an object to appear sharp
or blurred (Section 5). ApplicationsSwere also tested, but
are not presented here because of space constraints.

overview. Especially methods for pointing out information
have to make the relevant objects immediately stand out.

The following section presents some high-level resultswe ~ Experience suggests that sharp objects can be preatten-
obtained from the study; the sections after it go into the de- tively recognized among blurred ones: depth of field is a
tails — they first present the hypothesis to be tested, then the very effective means in photography and also cinematog-
test method, and finally the results. Technical details of the raphy, where the eye can be guided from one object to the
study (sample, etc.) are given in the appendix. other with focus changes. And blur is also present in the hu-

man eye, which also only has a limited depth of field (like a
camera lens), but we hardly notice that — we simply ignore

2. Results — How to Use SDOF blurred areas.

The following points are the key findings of our study:
e SDOF can be used to quickly and effectively guide the 3-1. TestProcedure

user's attentiorj. ' S We tested two preattentive abilities: being able to detect and
 SDOF makes it possible to discriminate between a small |ocate a sharp object, and being able to estimate the percent-
number (about two to four) of object groups. age of targets among distractors.

e Interaction is very important, because people do not like
looking directly at blurred objects (if they do so, the ap-
plication is badly designed).

e SDOF enables the user to get a quick overview of data by
letting him or her ask questions quickly and efficiently.

e Blur levels have to be chosen carefully. For normal view-
ing conditions, we found a blur of 7 pixels too small, and
a value of 11 pixels sufficient.

e Things that don’t need to be blurred shouldn't be.

The images for target detection and location showed el-
lipses whose main axes were horizontal, and which were
scattered over the image (Figure 2b). The reason for choos-
ing ellipses was that we needed objects that would not
change their shape drastically when blurred to rule out shape
perception effects. Ellipses seemed perfect for this, because
they don't change, and they can also be rotated (which was
needed in the interplay trial, Section 4). Participants were
shown images with 3, 32, or 63 distractors, with or with-
out a target (50% with, 50% without a target) and one of
3. Preattentivity the seven combinations of three different blur levels (7, 11,
and 15 pixels) — resulting in 42 different combinations. For
each combination, participants were shown five images (ran-
domly picked from 30 generated ones), resulting in 210 im-
ages per participant.

Preattentive processes take place within about 200 ms after
a stimulus is presentéd ®, and are performed in parallel,
without the need for serial search. Such processes involve a
limited set of features (e.g., orientation, closure, color, prox-
imity, etc.) for which certain tasks (e.g., detection, location, The test procedure consisted of four steps (Figure 2a):
count estimation, recognition of groups, etc.) can be per- First, an empty screen was shown for 300 ms, followed by
formed with ease. Using preattentive features for visualiza- the image, which was shown for 200 ms. After that, the an-
tion makes the information easier to see in order to get an swer screen was presented, which gave the participant the
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choice between clicking on one of the four quadrants or but- a)

tons for “no target” and “target not locatable”. After the an- EREEEEELEE

swer was given, a screen with the German word for “Next” e

was shown, which required a key-press to continue with \ * ‘
the next iteration. This was done to provide the participants

with a means to control the speed of the test. Additionally,

a screen encouraging the subject to take a short break was Empty “Next"

shown after every 30 images. For percentage estimation, the

sequence was identical, except that the answer screen con- i 300ms T

tained only three buttons for the estimated number of tar- G

gets: “few” (up to 19 targets), “intermediate” (20 to 45) and J |_
“many” (more than 45 targets). The images shown in this Image —  Answer —H—
trial only used one blur level per image, and always con- 200ms
tained 64 objects, with 5% to 95% of targets (in steps of

10%), and the rest distractors (Figure 2c). b)

3.2. Results - -

Finding sharp targets among blurred distractors is indeed - -
performed preattentively. Figure 3a shows the accuracies for

correct location of targets, which were very high90%) or - -
high (> 60%) depending on the blur level. When the low-
est blur level (7 pixels) was present, the accuracy dropped
significantly — this is most likely due to the fact that par- e o - - -
ticipants were not able to differentiate between sharp and
slightly blurred objects. There is also a significant differ- - = *® - -
ence in accuracy between the cases with three distractors
and those with 32 or 64 (Figure 3b), which was to be ex- - - -
pected. Accuracies were almost identical for cases with and

without targets, only for the case with only the smallest blur

level present, it was much higher in the no-target case. This

is most likely due to the participants not being able to distin-

guish between the slightly blurred distractors and the sharp c)
target, and thus not finding it — so stronger blur than 7 pixels

is needed (this is also quite apparent from Figure 3c). - - -

~
¢
’
¢
~
"™

Estimation of the percentage of sharp objects can also be
done preattentively. The accuracy for all blur levels is sig-
nificantly better than chance. When analyzed by number of -
targets, the accuracy is lowest close to the borders of the in-

. . : . o = =g - . .
tervals (“few”, “many”, “intermediate”), and slightly higher
on the low and high end than in the middle — which is not -® e ® e
surprising, because for these numbers, the participants can
make the decision more easily. The dependence on blur lev- - L, & -
els is weaker than for target location, and does not differ - o
significantly between the lowest one and the stronger two. a® & o9 . -
For the smallest blur level, more objects were perceived as g = - ¥ o*®
sharp (Figure 3d), which led to more errors. rFl

The results clearly show that SDOF is an effective method

that can draw the user’s attention to objects quickly. Getting ) . > i
a first idea of data (e.g., in a scatter plot) seems also possi- of screens for testing preattentive location of objects (Sec-

ble. The smallest blur level (7 pixels) clearly was too small tion 3) and interplay (Section 4}1) Sample image for target
for these viewing conditions, because it seriously impeded detection and location with 32 distractors of the highest blur
the subjects’ performance. Proper parameterization of the level, and atarge_tc) Example image for interplay: Find the
method for the user's viewing conditions is therefore nec- 'otated, sharp object.

essary.

Figure 2: Test sequence and sample ima@@3he sequence
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Figure 3: Results for preattentiveness) Ratio of correctly located targets depending on blur levels used (encoding of blur
levels see below)y) Ratio of correct answers by number of objeatsCorrect answers by blur level and number of objects;

d) Ratio of correct estimations by blur level and number of targétsoding of blur levels:for each of the three blur levels, a

1 indicates that it is present, and a 0 that it is not. So for “b011”, the lowest blur level was not present, the higher ones were.

4. Interplay two features in the targets (e.g., the red sharp object), while

. . . . the distractors could have any other combination of the two.
SDOF will very likely not be used without any other visual y

cues, which is why we were interested in its interaction with
other features: for this test we selected color and orientation. 4-2. Results

In terms of search time, SDOF is not significantly worse than
color — this is perhaps the most interesting and surprising
finding of this study. There is no significant difference be-

For this part, images similar to the ones used for the preatten- tWeen & simple search for colored or for sharp objects (Fig-
tiveness test were used, with the additional properties color Ure 4&). The conjunctive searches for color and blur, orien-

(red, black) and orientation (main axis horizontal or aty5  tation and blur, and color and orientation differ significantly
from each other, with color and orientation being the slow-

The user interaction was similar to the first blocks, only est — each of these two features combined with SDOF is
this time subjects could look at the image as long as they faster. Also, the conjunctive search for color and blur is not
wanted to find the answer — they were, of course, encouragedsignificantly slower than the simple and disjunctive searches,
to answer as quickly as possible. which is quite contrary to what we expected, because con-
junctive searches usually are sloer

4.1. Test Procedure

We testedsimple disjunctive andconjunctivesearches.
Simple searches are based on the presence of one feature in Search times were longer when no target was present (Fig-
the target, with the distractors not being different from one ure 4b), which is not surprising, because it takes longer for
another. In a disjunctive search, the subjects looked for one subjects to make sure they have not overlooked a farget
feature in the targets, but the distractors could also differ in The total number of errors in this block was only 10 (i.e.,
another one (e.g., if the red object is the target, all distrac- less than 0.7%) for the whole test (90 images per partici-
tors were black but could be sharp or blurred). Conjunctive pant, 1440 in total). This shows that subjects took the tests
searches required the participant to look for a combination of seriously, and did not sacrifice accuracy for speed.

(© The Eurographics Association 2002.
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Figure 4: Results for interplay of features) time needed for

search when target present (“simple”: only look for one fea- )
ture, with no other feature present; “dis”: disjunctive search s .
; ; u ; linear
for one feature with two distractor features; “con”: conjunc- . L
tive search for combination of featurels) search times for §
conjunctive search by search task and existence of target. & . I S
I DU S const

5. Blur Perception T e s e me e

Blur Level

One aspect of SDOF we were planning was to use it as a
fully-fledged, separate visualization dimension that could be _ ] its for bl .
used in addition to the existing such as space, color, etc. In Figure 5: Results for blur perceptiora) Correct answers

order to do this, we needed to assess the minimal difference 0" 1déntical ('no”) and different (*yes") objects, by blur
in blur that can be perceived, and the rate at which “steps” level; b) Distance needed to detect difference, by blur level;

in blur are perceived. Our original hypothesis was that there ¢) Numerical answer to perception of absolute blur value, by

. . h i 0,
would be an exponential relationship between the biur level diSPlayed blur value (error bars for 95% of values).
and the perceived blur (similar to the way luminance is per-
ceived, for example).

5.1. Test Procedure We also tested for the absolute thresholds of blur percep-

. . ! tion, by showing just one object, which was sharp in the
This test consisted of several parts. In the first, we tested beginning and got increasingly blurred until the participant
the ability to tell whether or not two objects had the same judged it as blurred. This test was also performed starting

blur level. For thi_s, we showed_the subjects two _objects next with a strongly blurred object that got increasingly sharper
to each other, with equal or different blur. Subjects had to (until it was perceived as sharp)

decide whether the blur was equal or different — if they de-

cided it was equal, the blur of one of the objects was in- In the final part, participants had to tell the perceived re-
creased (starting with sharp objects), and the objects were lation in blur in terms of a ratio of two numbers. They were
shown again. Another part started with strong blur and de- free to use any numbers they wanted (i.e., not restricted to
creased the blur level. In a third part, participants had to de- “1:x”), which were later normalized. These numbers were
cide, which of the two was sharper, or if they were equal. given orally, and recorded by the test supervisor.

(© The Eurographics Association 2002.
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5.2. Results

SDOF cannot be used as a full visualization dimension. Par-
ticipants were able to tell the difference between objects of
different blur levels (Figure 5a) with a good accuracy (which
even stayed quite constant even for strong blur). But they
were not able to correctly identify objects of the same blur-
riness, and did not better than chance for blur over 7 pixels.

The differences in blur needed to tell the blur levels apart
(Figure 5b) do not show a clear trend. The distances are
quite small (less than 1.8), and overall appear quite constant
which suggests a good differentiation between blur levels —
in accordance with the above results. In terms of absolute
values, a blur diameter of 3.27 (on average) was already

Properties of SDOF

Appendix: The Gory Details

The test setup was designed in workshop sessions between the computer scientists at the
University of Technology/VRVis and the usability experts at the Center for Usability Re-
search and Engineering (CURE); the test software was developed by Robert Kosara. All
tests were performed in August 2001 in the CURE usability lab in Vienna, Austria.

For significance testing, we used chi-square tests and ANOVAs with Scheffé tests for
post-hoc analyzes. All results that are described as significant in this paper were tested for
with a probability for error ofp < 0.001. The base level for the whole study was: 0.05.

To rule out large differences in perception between test participants, and to allow for a
rather small sample size due to financial and time constraints, we selected a rather narrow
group of participants who all fulfilled the following requirements: male, aged 18-25, very
good vision (no contact lenses or glasses), student at university, basic computer knowledge.

The sample size was 16 individuals, which we recruited from different universities
’in Vienna. Each participant was paid a small amount of money for taking part. Each test
session took about two hours.

References

judged a sharp object, when the participant was presented

a very blurred object that got sharper; but a blur level of
only 1.46 was already judged as blurred when starting out
with a sharp object.

When judging the ratio of blur of two objects, subjects
reported very small numbers compared to the real ratio (Fig-
ure 5c¢). Their answers also differed very much, so that no
clear trend could be made out. This is quite contrary to the
above results about being able to differentiate between blur

levels. So while subjects were able to see a difference, they

were not able to quantify it — another peculiar similarity to
color perception.

The quantitative results of this part of the study form a
consistent image with the participants’ comments, that they
disliked having to look at blurred objects and to compare

them. It therefore appears to be necessary to make sure that

no important parts of the display are blurred, and that the
user can switch to a different view, or back to a completely
sharp image at any time.

6. Conclusions and Future Plans

This study has shown that SDOF is, indeed, an effective and
efficient method for guiding the user’s attention. We were
surprised to find the similarities with color (even though they
were not significant), which we had not expected. We now
also have some data for parameterization of SDOF for the

use in standard desktop environments, and can perhaps ex-

tend this to other viewing conditions as well.

This study has revealed a lot of interesting information
about SDOF, but it was only a first step. We want to con-
tinue investigating SDOF properties and parameters in new
studies which we want to design based on this one.
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