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Abstract Despite its often technical nature, visualization is in many ways a form
of visual representation. Just how visualization relates to illustration, information
graphics, digital art, visual languages, etc., is nonetheless poorly understood. We
propose a theory that embeds information visualization within other visual traditions
in terms of criteria that are not purely technical: dependence on data, mapping, in-
teractivity, and notationality. In addition to providing the means for a classification,
these criteria also foster a different understanding of information visualization. We
further adapt our criteria to differentiate within visualization, using mapping, read-
ability and information loss, and notationality as the criteria. Both sets of criteria
are demonstrated in a number of case studies. We believe that our novel taxonomies
of visualization methods serve as a step towards a more comprehensive theoretical
context to understanding the essential purposes, properties, and functions of infor-
mation visualization.

1 Introduction

Information visualization is a young field which draws from disparate sources in
computer science, design, statistics, data mining, psychology, and the visual arts.
While interest in visualization has grown greatly in recent years, its appropriate po-
sition within this broader space is unclear, as is the nature of the boundaries that set
it off from its neighbors. In order for new research and new ideas to be understood
within this larger context, a theoretical foundation is needed. General computing
theory breaks algorithms down to their essential properties, identifying those which

Caroline Ziemkiewicz
UNC Charlotte, e-mail: caziemki@uncc.edu

Robert Kosara
UNC Charlotte e-mail: rkosara@uncc.edu

1



2 Ziemkiewicz and Kosara

are fundamentally similar or different independent of implementation. Similarly, a
theory of visualization which identifies the primitives and essential properties of vi-
sualization methods could offer new perspectives on current problems and identify
paths that lead forward from existing research.

This theory should include a definition of information visualization as distinct
from other forms of visual representation. Often, visualization is defined as any
translation of data to image, but intuitively its purpose seems substantially different
from those of information graphics or data-based artworks. Locating visualization
within the larger context of visual representation will contribute to a greater under-
standing of fundamental research goals.

Also needed are meaningful divisions among specific data visualization methods.
Traditional categories within visualization, most notably scientific visualization, in-
formation visualization, and visual analytics, are themselves vaguely defined and
tend to overlap. The term data visualization itself is ambiguous, as it sometimes
refers to all of the above and is sometimes used to refer specifically to scientific
visualization and not information visualization. For our purposes, data visualiza-
tion will be used to refer to all visualization derived from data, whether that data
is abstract or bound to locations. Our primary focus is on information visualization
(InfoVis), although our theory has applications outside of that focus. More precise
definitions are needed not only to clarify the concepts already in use, but also to
show in sharper relief potential research areas which exist beyond those concepts,
as suggested by Tory and Möller [24].

With this in mind, we have constructed a map of the visualization field that con-
tains not only the internal structures of the field, but also the outer borders that
separate visualization from similar ventures such as infographics, visual languages,
and data art. Our theory, which draws from existing visualization models as well
as broader theories of aesthetics and visual grammar, takes active readability of
information to be the central goal of visualization, distinguishing it from other cate-
gories of visual representation. Readability is defined in terms of four criteria. To be
readable, a visualization must be a mapping from property data to a corresponding
image. This mapping must be bijective, so that there is a one-to-one correspon-
dence between elements of the image and pieces of information. We also argue that
readability requires nontrivial interactivity, so that the possible information a visu-
alization can convey is not fixed by the designer. Finally, we argue that information
visualization in particular must be syntactically notational by Nelson Goodman’s
definition [6], meaning that it is composed of discrete and disjoint visual symbols.
We use these criteria to define both information visualization and several closely
related classes of visual representation.

We then propose a set of three classifications based on aspects of readability in
order to formalize the internal distinctions among visualization methods. These in-
clude whether the mapping is linear or nonlinear, whether it is designed to minimize
or control information loss, and whether the visualization is discrete or continuous,
which we define formally using Goodman’s idea of semantic notationality. We go
on to apply this taxonomy to some key examples from existing visualization re-
search, and show how it can form meaningful groupings of visualization methods
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based on type of readability that echo and expand upon earlier taxonomies. We be-
lieve that this classification will serve to inspire innovative research directions and
illuminate new connections within existing research. We also hope to stimulate in-
terest in a more comprehensive theoretical basis to visualization, leading to greater
understanding of the field as a whole.

2 Related Work

Our work builds on taxonomies of visualization methods and also takes ideas from
work in visual languages and the automated design of visualizations.

2.1 Visual Mappings and Languages

A major goal of our work is to understand the primitives of visual representation
and the mappings by which they are combined into meaningful symbol systems. A
seminal inspiration for this area of research is Bertin [3], who analyzes diagrams
and maps as a semiotic system of marks, retinal encodings, and spatial properties.
Other formal theories of visual mapping include Goodman [6], whose definition of
a notational system is meant to distinguish formal visual languages, such as those
that make up certain kinds of diagrams, from the broader class of representational
pictures. These two theories serve as important foundations for our work.

One relevant branch of research is that which strives to create automated or semi-
automated visualization systems based on formalized systems of visual mapping—
even though we do not want to go nearly as far. This includes Mackinlay’s APT sys-
tem for automatically generating visualizations based on properties of the data [16],
a concept which has recently been incorporated into the commercial software
Tableau [17]. Such applications suggest the immediate practicality of creating con-
sistent and precise theories of visual representation.

2.2 Visualization Taxonomies

In addition to understanding visual mappings as they relate to information visualiza-
tion, our work builds upon previous efforts to construct a taxonomy of visualization
methods. Shneiderman [22] introduces a 2-axis classification of methods based on
type of task and type of data. A similar taxonomy is proposed by Card and Mackin-
lay [4], who combine a more formal definition of data types with a system of visual
properties drawn from Bertin [3].

Chi [5] takes a different approach by focusing on the transformation from data
to visual representation, and goes on to differentiate visualization techniques by
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the actions taken at each transformation step. Tory and Möller [24] build on pre-
vious work that considers the degree of spatial constraint and continuity of data as
important axes, but take a more usability-inspired perspective in viewing these as
attributes of the designer’s internal model of the data rather than inherent properties
of the data themselves.

Our work differs from these previous taxonomies in our focus on visual mapping
as independent from data and task type. In this sense it is most similar to Chi, al-
though our interest lies in defining properties of the mapping as a whole, while Chi
focuses on dividing it into stages. We extend Kosara’s [12] definition of visualiza-
tion primarily through the fact that it is a representation of data that is readable, i.e.,
that provides a mapping from the visual representation back to the data. Our work is
also unique in that it attempts to place visualization within the larger realm of visual
representation. We believe that this effort is vital in guiding progress within the field,
by illuminating both the limitations and unexplored directions of data visualization.

3 Visualization in Visual Representation

Our theory covers two major subjects: first, how to distinguish visualization from
other forms of visual representation, and second, how the concepts from this defini-
tion may be used to differentiate visualization methods from one another. Building
on previous work [12], we have developed a definition of information visualization
as that class of visual representation which:

• is derived from data,
• represents a bijective mapping from information to image,
• provides for nontrivial interactivity, and
• is a syntactically notational symbol system.

We elaborate on each of these items and show how they contribute to the overall
definition of readability.

3.1 Data-Driven

A data visualization must consist of a mapping function from some existing data
source to an image. We define this mapping as a two-step transformation: in the first
step, data is processed to produce information in the form of an analytical abstrac-
tion, and in the second step, the information is transformed to visual elements. This
view of the visual mapping follows that in Chi [5], although for our purposes we
treat the visual mapping as a single step rather than dividing it into a visualization
transformation and a visual mapping transformation.

The requirement that a data visualization be based on data is perhaps an obvious
one, although the definition of data may require more elaboration. For example,
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Fig. 1 Our model of the visual mapping process, which is a simplified version of the data state
reference model [5].

a mathematical visualization that shows a fractal expanding over time may be a
visual representation of information, but not of data in the sense that visualization
researchers generally use the term. Generally, the term data in our sense refers to a
collection of properties about objects or concepts which exists independently of the
visualization. This can come in the form of tabular data containing attributes of some
collection of subjects, scientific data which represent a sampling of the properties
of an object or phenomenon, text, or multimedia data which contain properties of
images or sound.

It may be useful, then, to make a distinction between data visualization, which
represents properties of information, and function visualization, which represents
the visual analog of a process. In the latter case, the information being visualized
is treated as a definition of the mapping itself, while we are concerned with cases
in which the mapping is independent of specific data. For our purposes, we use the
term visualization to mean data visualization, and consider function visualizations
such as mathematical visualizations, algorithm visualizations, visual programming
languages, and visual proofs to be separate ventures.



6 Ziemkiewicz and Kosara

Fig. 2 Three types of mapping (Section 3.2) and resulting information loss (Section 5.2, Figure 4),
using the example of a bar chart.

3.2 Bijective Mapping

Although a visualization must be the result of a mapping function, not all visual
mappings necessarily result in visualizations. We take the concept of injective, sur-
jective, and bijective functions from mathematics (Figure 2) as an analogy in distin-
guishing visual mappings that form visualizations from those which do not.

A function is defined as a mapping from a domain to a codomain. Those map-
pings in which each element in the (source) domain is mapped to a unique element
in the (target) codomain are injective. In a non-injective mapping, several elements
in the domain may map to one element in the codomain. Because of this, a non-
injective mapping is irreversible, i.e., there does not exist a function which perfectly
inverts the mapping. Mappings in which each element in the codomain is mapped to
by some element in the domain are surjective. This means that there are no possible
values in the codomain which do not correspond to a value in the domain. Those
mappings which are both injective and surjective are bijective, so that every element
in the domain maps to exactly one element in the codomain, and every element in
the codomain can be mapped back to a single element in the domain.

We use these classifications as a metaphor in defining properties of the visual
mapping step. In this metaphor, the domain represents the information extracted
from the data in the processing step and the codomain is the set of image elements in
the visual representation. An injective visual mapping is therefore one in which ev-
ery piece of information maps to a single visual element, although there can appear
visual elements that do not correspond to information. Likewise, a surjective visual
mapping consists only of visual elements that relate to information, although each
unique visual element can correspond to one or more pieces of information. And a
bijective visual mapping is one in which every piece of information corresponds to
exactly one unique visual element. In Section 3.4 we discuss the definition of visual
elements more thoroughly.

We find that both injectivity and surjectivity are necessary conditions for a vi-
sual representation of information to be readable. In a non-injective mapping from
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information to image, more than one piece of information can be mapped to a sin-
gle unique visual element. Since this can lead to ambiguity and information loss
(Section 5.2), such a mapping would not be readable. Non-surjectivity, on the other
hand, implies that there can be significant elements in the visual representation that
are not derived from the data. These elements may be accidental artifacts of the vi-
sual mapping, or intentional aesthetic elements included for decorative rather than
informational purposes (what Tufte calls chartjunk [25]). Since such elements can
distract or mislead a user, we require that the visual mapping be surjective as well.
An exception should be made, however, for visual elements that provide informa-
tion about the mapping itself, such as legends, scales, or labels, provided they do
not interfere with readability.

3.3 Nontrivial Interactivity

We argue that interactivity is an essential aspect of active readability. By active
readability we mean that a user should be able to actively seek information, rather
than merely accessing existing information determined by the designer. This would
exclude static infographics, diagrams, illustrations, and maps from the class of visu-
alization. The ability for the user to control her view of the data within the context
of the given visual mapping has long been considered one of the foundations of
visualization, as evidenced by Shneiderman’s oft-cited Visual Information-Seeking
Mantra [22] and the emphasis on focus-and-context strategies in both information
and scientific visualization.

InfoVis SciVis Infographics Function Vis Vis Art Iconography Art

Data-Driven Yes Yes Yes No Yes No No

Type of Mapping Bijective Sur- or Bijective In- or Bijective None Any None None

Interactive Yes Yes No Maybe Maybe No Maybe

Syntactically Notational Yes No Yes Maybe No Yes No

Table 1 Embedding information visualization within visual representation, depending on whether
or not a representation is data-driven, its mapping type, interactivity, and syntactic notationality.

Additionally, we distinguish between trivial and nontrivial interaction, which
changes the parameters of the visual mapping itself. For example, semantic zoom-
ing, moving from node to node on a hyperbolic tree, and multidimensional scal-
ing would be nontrivial interactions. While a visual representation may include any
number of interaction methods, both trivial and nontrivial, the presence of at least
some nontrivial interactivity is an especially strong argument for a given represen-
tation being a visualization.
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3.4 Syntactically Notational

As discussed in Sack [20], the usability goals of visualization have been described as
opposed to ideas of the “sublime” as a criterion for aesthetic works. Although Sack
proposes several other aesthetic criteria by which to judge artistic visualizations,
we distinguish between data-based representations with the goal of readability and
those which are to be read as more pictorial depictions. Therefore, for the last item
in our definition of visualization, we have drawn from Nelson Goodman’s definition
of notational systems. A notational system is a visual mapping in which discrete and
disjoint concepts map to discrete and disjoint symbols, making the system a visual
grammar of sorts, rather than an image which is to be understood in a more holistic,
pictorial fashion. For example, musical notation, in which each mark maps to a
unique musical note, is a notational system, while photography is not. Goodman’s
formal criteria for a notational system, as summarized by Lee [14], are as follows:

1. The system must consist of symbols (utterances, inscriptions, marks) that form equiva-
lence classes (characters), which can be exchanged without syntactical effect. [...] The
characters have to be disjoint, so that no mark qualifies as an instance of more than one
character. [...]

2. Characters have to be “finitely differentiable” (or “articulate”) in the sense that their
disjointness is feasibly testable; this rules out, in particular, “dense” systems in which
any two (ordered) characters have another between them.

3. Notational systems must be unambiguous, so that the extension (i.e., what is referred
to, which Goodman calls the “compliance-class”) of an inscription is invariant with
respect to time, context, and so on.

4. The compliance-classes of all characters must be disjoint. (Also, the system will ideally
be nonredundant.)

5. Compliance-classes must also be finitely differentiable. Thus, for example, any system
that is “semantically dense,” in that its compliants form an ordering such that any two
have another between them, is excluded.

We do not require that any given information visualization be a complete no-
tational system, but that it be at least syntactically notational, meaning that it ful-
fills the first two criteria in Goodman’s definition. The discrete characters to which
Goodman refers can be thought of as glyphs [2], where the term “glyph” is being
used more generally than usual, to refer to the primitive symbols of any visualiza-
tion. That is, a glyph is the smallest portion of a visualization whose visual attributes
are fully meaningful in terms of mapping data.

We can use Goodman’s definition of notational characters, then, as a definition
of glyphs as visualization primitives. The claim that glyphs must be disjoint implies
that each possible glyph must qualify as a unique character regardless of its place-
ment in the image, and no mark in the image qualifies as more than one unique
glyph. The claim that they are finitely differentiable implies that the space of possi-
ble glyphs must be discrete. Glyphs in our formulation need not be the multidimen-
sional icons to which the term is most often applied; they could just as well be bars,
points, lines, areas, pixels, or voxels. As long as they are discrete pieces of visual
information that can be differentiated from other elements of the visual field, they
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qualify. This is even true for the extreme case of pixel-based visualization [11], in
which each single pixel can be considered a glyph.

4 Applying the Definition

The common definition of visualization as the presentation of information in vi-
sual form can be argued to include a large variety of visual representations with
wildly differing goals. A partial list of these representations, and their classification
according to our system, can be seen in Table 1. According to our definition, in-
formation visualization contains those visual representations which are based upon
property data, represent a bijective mapping of information to image, include non-
trivial interactivity, and are syntactically notational, distinguishing it from several
closely related categories. While some of these distinctions are self-explanatory,
others warrant further discussion.

4.1 Scientific Visualization

Data visualization as a whole can be seen as comprising all visual representations
that fit the first three criteria: being data-driven, having a bijective mapping, and be-
ing nontrivially interactive. Through the final requirement of syntactic notationality,
our theory makes a distinction between information visualization and most kinds
of scientific visualizaton as the terms are usually used. Many instances of flow and
especially volume visualization cannot be broken into disjoint glyphs. In all these
cases, the continuous nature of the visual representation makes the resulting image
pictorial rather than notational. Understanding a scientific visualization is more like
taking in a picture than like reading a visual language.

4.2 Information Graphics

Information graphics, or infographics, are often mentioned in connection with in-
formation visualization, and there are cases where it is unclear which category a
given visual representation falls under. The term historically refers to visual pre-
sentation of data in the context of a newspaper or magazine, however. It may be
thought of as a useful category covering those visual representations whose intent is
communication of fixed information rather than interaction with fluid information:
in other words, readability, but not active readability. Therefore, the main distinction
between infographics and information visualization is the lack of interactivity. In ad-
dition, many infographics as seen in magazines and newspapers contain decorative
elements which detract from the bijectivity of the representation.
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4.3 Function Visualization

Another category closely related to data visualization contains what might be
thought of as function visualizations. Visual analogues of mathematical functions,
algorithms, or logical proofs are not based on property data, and as such are not
readable in our sense. A visualization of a fractal, for example, is a representation
of the equation on which it is based, but it is not possible to retrieve that function
by looking at the image. Since we see visualization as the mapping from properties
of data to properties of image, visualization of processes represents an interesting
but separate field of visual representation. Visual programming languages may fall
under this category as well, since they are closely related in purpose to algorithm
visualization and visual proofs.

4.4 Artistic Visualization

Artistic visualizations, such as Artifacts of the Presence Era [27] or The Dump-
ster [15], provide a final borderline case. While these vary widely, in general they
treat data in a visualization-like way with the goal of achieving an aesthetic rather
than a readable effect. Artifacts can perhaps be broken into glyphs in the form of the
“strata” that build on top of one another to show the images and sound waves cap-
tured in a museum over time. These strata are not, however, finitely differentiable;
since the glyphs are based directly on the image and sound wave, and the precise
nature of the images and sounds captured can be nearly infinitely varied, the range
of possible glyphs is syntactically dense, and therefore non-notational. In contrast,
if properties of the image and sound (such as illumination, number of people visible,
or volume) were mapped to visual properties, the disjointness of the glyphs could
be feasibly tested.

Our theory also suggests an additional answer to the questions raised by Skog
et al. [23]. This ambient visualization of bus schedules inspired by the art of Piet
Mondrian was not automatically perceived by passersby as being a visualization at
all, but rather was often assumed to be just a piece of digital art. Since only a few
of the many visual elements on display in the image corresponded directly to data,
the mapping was not surjective. This may be a characteristic of many decorative
or artistic visualizations where visual elements are chosen for aesthetic reasons (in-
cluding creating a sublime experience, Section 3.4) rather than those of usability. As
Sack points out [20], the two goals can be seen as diametrically opposing each other.
The fact that many passersby saw the work as aesthetic rather than readable may be
a result of its non-bijectivity and non-notationality, in addition to its resemblance to
existing artworks.
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Fig. 3 A scatterplot is a linear mapping, because position has an absolute meaning. A scatterplot
superimposed over another scatterplot (of the same scale) is no different from a scatterplot of both
datasets combined, and multiplying all the values in a dataset by a constant factor yields a uniform
stretch of the visual representation.

5 Differentiation Within Information Visualization

Having established the boundaries of the field of visualization, we will now examine
how aspects and implications of that definition may be used as the foundation for a
novel visualization taxonomy. This taxonomy is composed of three axes:

• whether the mapping is linear or nonlinear,
• the treatment of information loss in the mapping,
• and whether the system is semantically notational.

We believe that these axes – while not immediately obvious – encapsulate many
of the intuitive dimensions on which researchers tend to sort visualization methods.

5.1 Linear and Nonlinear Mappings

Another characteristic of the visual mapping function that illuminates fundamental
differences among visualization methods is again based on an analogy from mathe-
matical functions. In this case, we explore what it means for a visual mapping to be
linear or nonlinear.

In mathematics, a linear transform is one which has the following properties [19]:

• Additivity, so that f (x+ y) = f (x)+ f (y)
• Homogeneity, so that f (ax) = a f (x)

We extend these properties to visual mappings as follows. A visual mapping is
additive if a visualization of one dataset, combined visually with the same visual-
ization of another dataset, is equivalent to the visualization of the union of the two
datasets. Likewise, a visual mapping is homogenous if a constant transformation
over the data would yield a similarly constant transformation over the image.
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Because this is only possible when a given data point’s mapped location and ap-
pearance remain constant when other portions of the dataset change, this implies
that a linear visual mapping is one in which each visual element of a glyph has ab-
solute meaning. In nonlinear mappings, in which a glyph’s location and appearance
change with changes in the dataset, information in the visualization must arise to
some degree from visual relationships among glyphs.

5.2 Mapping and Information Loss

The mapping of data to its visual representation is a central aspect of visualization,
and thus also a criterion for differentiating within visualization. In the definition sec-
tion, we discussed the requirement that a visualization implement a bijective map-
ping of data to visual parameters (Section 3.2). But what exactly does this mean for
a practical visualization that uses a real-world output system with a limited resolu-
tion both spatially and in terms of color? Visualization leads to a loss of information
in most cases, but exactly how much is lost, and when do we accept this?

We distinguish between two types of information loss: intentional and unin-
tended.

Intentional Information Loss

Information loss is intended in many cases where data is aggregated so as to get
a better overview over the structure of the data rather than its exact details (e.g.,
histograms [13], pivot graphs [29], etc.). Information is also intentionally lost in
the case of non-numerical data like text documents. Many non-linear mappings (see
above) like the multi-dimensional scaling used in IN-SPIRE [30] reduce the data to
a tiny fraction of the original to be able to visualize them at all.

Unintended Information Loss

Unintended information loss comes from the limits of the output device and/or hu-
man perception. All current displays use pixels of finite size as their basic elements,
and have a limited number of colors or shades of gray they can show. Human per-
ception is certainly also limited in the number of points it can discern, and more
than that in the number of colors that can be differentiated [28].

There are many different kinds of unintended information loss, which can result
from projections of higher dimensional data, overplotting (which can have different
reasons), etc. For the purposes of our model, we only investigate the loss of infor-
mation caused by the quantization of values when they are displayed on an output
device.
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A linear transformation of data to visual properties on screen (Figure 4) can be
defined like the following. The nth data dimension Dn = {di} of an unstructured
data set contains a largest value dmax and a smallest value dmin. The data is mapped
onto screen values s, which can be pixel positions or colors. For simplicity, we only
consider a single visual attribute here, but this discussion can be easily generalized.
The smallest value for s is smin, the largest smax (Figure 2) – these are always whole
numbers. The square bracket indicates rounding to the nearest integer.

s(d) =
[

d−dmin

dmax−dmin
(smax− smin)

]
+ smin

Especially in the case of color, a more general quantization function [7] may be
introduced that further reduces the number of possible values.

s(d) = q
(

d−dmin

dmax−dmin
(smax− smin)

)
+ smin

There is clearly a loss of information from the quantization that results from the
rounding that needs to be performed when the value is drawn onto the screen; in
the case of anti-aliasing, the rounding will be to a fraction of an integer, but the
resolution of the display is still finite.

The resulting limited resolution limits the user’s ability to read values (see be-
low). We can quantify the resolution in data space as follows. All values within one
bin of size ∆d end up looking exactly the same to the user.

∆d =
∣∣∣∣dmax−dmin

smax− smin

∣∣∣∣
In case a quantization function q is used, and this function is a uniform quantizer,

∆d = ∆q (∆q being the bin size of the quantizer).
Actual information loss comes from the difference between data values and pos-

sible visual mappings. We define additional variables: rD = dmax−dmin is the range
of values in the data dimension; uD is the number of unique (distinct) values in data
data dimension D; uS is the number of distinct values on screen, which for the lin-
ear case means uS = smax− smin + 1, and in case of using a quantization function
uS = Nq(Dn), the number of distinct values the quantizer can produce for the given
data dimension Dn – in the case of a uniform quantizer, Nq(Dn) = d rD

∆qe.
Information loss occurs in all cases where uD > uS, i.e., there are more distinct

values than can be mapped into the visual domain. For uD ≤ uS, there are two differ-
ent cases (Table 2). If rD > uS, information loss occurs if the data is to be mapped
onto a continuous scale. In the case of the data domain being categorical, however
(which is rather likely for all uD ≤ rS cases), the data can be mapped without loss.
The best case in terms of information loss is if rD ≤ uS, because no information
loss will occur: there are enough unique screen variables to which the data can be
mapped.

Since a true bijective mapping is only occasionally possible, visualization de-
signers must make a choice between trying to minimize the amount of information
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Information Loss rD ≤ uS rD > uS

uD ≤ uS No Yes, unless categorical

uD > uS Yes Yes

Table 2 Information loss in the linear case, depending on: number of distinct screen values uS,
range of data values rD, and the number of unique data values uD.

Information Loss Type of Mapping Continuity Examples

Loss Is Unintended

Linear
Discrete Scatterplot, Parallel Coordinates [10], Bar Charts

Continuous Timelines [18]

Nonlinear
Discrete TreeMap [21], Cartograms, Node-Link Diagrams

Continuous Information Flocking Boids [26]

Loss Is Intentional

Linear
Discrete Histograms [13], PivotGraph [29]

Continuous Brush Strokes [9]

Nonlinear
Discrete IN-SPIRE [30]

Continuous ThemeRiver [8], TextPool [1]

Table 3 Differentiation within information visualization along the axes of information loss, map-
ping, and continuity.

loss as much as possible and controlling information loss through data processing
techniques such as clustering, summary, or filtering. Whether a visualization con-
tains intentional information loss or only unintended information loss is the second
axis in our taxonomy.

5.3 Semantic Notationality and Continuity

Following Tory and Möller, we see a discrete or continuous data model as an addi-
tional important variable in distinguishing among visualization methods. We further
formalize this variable using the second part of Goodman’s definition of notation-
ality (Section 3.4). As the first two items referred to syntactic notationality, the last
three define a system with semantic notationality. A semantically notational system
is one in which the meaning of a symbol is unambiguous and does not overlap with
the meanings of other symbols. In terms of visualization, this means that any given
glyph must maintain a distinct meaning regardless of context, and each glyph refers
to a unique and disjoint portion of the data.

In visual mappings that are based on continuous data models, semantic nota-
tionality does not apply. A continuous data model implies the assumption that data
points are not disjoint, but rather can be thought of as samplings along a continuum,
so that the portions of the continuum referred to by any two consecutive sample
points cannot be clearly divided. Furthermore, a continous model implies that con-
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text is significant in understanding the meaning of a data point. For example, in a
visualization showing change over time along a timeline, each glyph’s meaning is
dependent upon the change it represents from the glyphs that come before and after.
Semantic notationality, therefore, can be used as a definition of the intuitive sense
of continuity that some visualizations represent.

Fig. 4 An illustration of information loss in a linear mapping for two cases a) uD > uS and b)
uD < uS; with rD > uS in both cases.

To elaborate further upon the notion of continuity, it is also useful to consider
whether the data are treated as sampled or fully represented. In medical volume
data, for example, the data are generally discrete images, but represent a sampling
from a continuous structure; therefore, the design model usually treats the data as
continuous and sampled, implying the need for interpolation. Data in the form of a
continuous distribution function, on the other hand, could be treated as continuous
and fully represented. This distinction applies similarly to discrete data. A dataset of
attributes of different cars, for example, is usually treated as both discrete and fully
represented. Census data, on the other hand, are a common example of discrete
data which are often treated as sampled, since not all of the people represented
are actually polled. Another example is stock market data, which can represent a
sampling over time of the aggregation of many individual actions (i.e., buying and
selling at specific prices).

Since a fully represented and continuous data model requires a continuous sym-
bol space, a visual mapping that employs such a model is not syntactically notational
and therefore lies outside of information visualization. Of the other three cases, only
the discrete and fully represented data model is semantically as well as syntactically
notational. Both discrete and sampled and continuous and sampled models are not
semantically notational, and are therefore relatively more pictorial than other visual
mappings.

A visualization method that employs a discrete and fully represented data model,
and is therefore a complete notational system, is a more literal mapping of the data
than one that does not. In other words, the metaphor being used is more direct,
since it maps more closely to a translation from one language (that of the data, be it
numerical or otherwise) to another (i.e., the symbol system of the visualization). As
a visualization moves closer to Goodman’s idea of the pictorial, the mapping from
data to image becomes less a translation than an abstraction.
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6 Taxonomy of Visualization Methods

The three major axes described above map the design space of valid visualization
methods according to our definition. In Table 3, we show a number of information
visualization techniques sorted according to our three axes. This produces an infor-
mal spectrum of methods from the most direct at the top of the list to the most ab-
stract at the bottom. We have divided this spectrum into four loosely defined groups
as an initial taxonomy of visualization methods by type of readability. Note that
these are not rigidly defined boundaries between subgroups, and that some methods
may draw from several categories.

6.1 Direct Translation

The methods on the unintended loss, linear, and discrete end of the spectrum are the
most direct translations from data to image. These methods perform minimal pro-
cessing of the data, so that the visual mapping is executed directly on data points,
rather than on intermediate pieces of information. In parallel coordinates [10], for
example, each data point is projected to a unique glyph (in this case, a polyline);
therefore, any information loss that occurs due to overplotting is unintentional, not
inherent to the mapping. Likewise, this mapping is linear since the arrangement of
each polyline glyph has absolute meaning, and it is discrete since there is no mean-
ingful interpolation between data points. This is a direct translation because if there
were no unintended information loss, one could theoretically reverse the mapping to
produce the original data. Readability of data in this case is straightforward, except
as it is confounded by information loss.

6.2 Relative Meaning

As mappings employ more intentional information loss, nonlinear mapping, and
continuous data models, the visualization becomes more abstracted in different
ways. In the case of TreeMaps [21], there is no intentional data loss, and the data
model is discrete; however, the mapping is nonlinear since the position of a glyph
(that is, a rectangle representing a node in the hierarchy) only has meaning relative
to the position of other glyphs. Adding data to a hierarchy would result in an entirely
different TreeMap layout. This makes for a slightly more indirect mapping than in
the linear case. The readability of such a mapping is less trivial than in the case of
more direct methods, because data is mapped not only to visual properties, but to
relationships among visual properties. The user must look at more than one glyph
to extract information about a single data point.

An unusual case which shows the abstraction in continuous methods is the In-
formation Flocking Boids [26] system. In this visualization of time-varying stock
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market data, glyphs are treated as agents which attempt to gather near similar glyphs
without colliding with them. This is meant to produce a flocking behavior among
clusters of similar stocks over time. Since the position of glyphs is so highly de-
pendent on other glyphs, this is clearly nonlinear, and the importance of context
to meaning indicates a continuous data model. While this method still attempts to
show every data point, it represents a high level of abstraction. Since data properties
are being mapped to physical attraction of glyphs rather than to simple image prop-
erties, readability is not a matter of reversing the mapping to data points, but rather
of seeing overall patterns.

6.3 Aggregation

In mappings where the loss is intentional, steps are taken in the data processing
stage to pare down the amount of information in order to reduce the amount of unin-
tended loss. The simplest of these are histogram methods, which aggregate data into
bins based on categorical dimensions or ranges of numerical dimensions, with size
representing the number of members in each category or range. PivotGraphs [29]
combine the idea of node-link diagrams with histogram representations, resulting
in aggregated nodes and links, rather than nodes and links which refer to one data
point or one relationship each. Properties of the dataset are readable, while individ-
ual properties of data points may be lost.

6.4 Abstraction

The most abstract mappings are found at the nonlinear and continuous end of the
intentional-loss methods. This includes methods such as ThemeRiver [8], which
employs a continuous model of highly filtered and aggregated document data in a
nonlinear mapping. These methods sacrifice readability of any given data point for
an understanding of the dataset as a whole, meaning they are moving closer to being
pictorial rather than purely notational symbol systems.

While many useful methods have already been established in the more direct
subgroups of our taxonomy, examples in the more abstracted subgroups are rela-
tively rare. These areas may suggest directions for novel future research that seeks
innovative mappings of data to image.

7 Conclusion

We present a theory in which visual representations are classified by properties of
their mapping from data to image, rather than by properties of the image or proper-
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ties of the data. This theory embeds visualization as a field within the larger visual
culture, and serves as a basis for a taxonomy of information visualization meth-
ods. This work contributes the beginnings of a more solid theoretical foundation
for the visualization field. Further work can build on this foundation by describing
these mappings in more detail; for example, a framework of visual representation
as visual metaphor has been fruitful in exploring cognition in information visualiza-
tion [31]. Additionally, this theory provides a new perspective on visualization as a
whole as well as on the similarities and differences among visualization methods. It
can be used to guide design decisions and to inspire debate that will lead to greater
understanding of the visualization field.

The application of our theory to existing forms of visual representation demon-
strates its viability as an organizational tool. In particular, using the distinction be-
tween notational and pictorial systems, we have shown how the classic categories of
scientific visualization and information visualization can be distinguished from one
another without relying on properties of the data, which can be problematic [24].
This definition also allows us to formalize to some degree the intuitively apparent
differences among data visualization, artistic visualization, and infographics, in ad-
dition to the less frequently considered category of function visualizations.

In extending our theory to an internal taxonomy of information visualization,
we also build upon the work of Tory and Möller in constructing a new perspec-
tive on visualization which is less dependent upon inherent properties of the data.
Specifically, their axis of discrete vs. continuous models of the data is included in
our taxonomy, while we use the notion of semantic notationality to formalize and
expand upon the original concept. Our axis of linear vs. nonlinear mappings also ad-
dresses some of the intent of Tory and Möller’s axis of spatially given vs. spatially
chosen data models. Both axes end up describing visualizations with varying levels
of spatial constraint assumed in a given visualization, though the axis of linearity
does so independent of data type.

Future work in this research includes a more thorough examination of the taxon-
omy of information visualization and a more formal characterization of the group-
ings it produces. This work may also serve as the foundation for a semi-automated
tool for designing glyphs and visual representations, in order to test its practical
applicability. Such an effort would entail a greater exploration of the definition of
glyphs taken from Goodman’s syntactic notationality.
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