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ABSTRACT
Visualization research focuses either on the transformation
steps necessary to create a visualization from data, or on the
perception of structures after they have been shown on the
screen. We argue that an end-to-end approach is necessary
that tracks the data all the way through the required steps,
and provides ways of measuring the impact of any of the
transformations. By feeding that information back into the
pipeline, visualization systems will be able to adapt the dis-
play to the data to be shown, the parameters of the output
device, and even the user.

1. INTRODUCTION
Most visualization models consider the representation on
screen as the endpoint of the visualization process, and treat
it as a transparent window to the data. This model is incom-
plete at best, and actually quite misleading. In the effort to
amplify human cognition [4], the source data is transformed
multiple times, in ways we know in principle, but the impli-
cations of which we are largely ignorant of: numerical insta-
bilities, scaling, rounding effects when numbers are turned
into coordinates for rendering, etc.

On the other side of the screen are the user’s perceptual
and cognitive systems. While we know many issues that
can limit the user’s ability to see and grasp the data, there
are few ways of predicting when these will occur. Is the
display cluttered? Is the display ambiguous? Is there data
hidden behind other data? [9] Often, the user may not even
be aware that data can be hidden, much less have a way of
finding out whether there is hidden data or not.

So far, in visualization, the focus has primarily been on tack-
ling known unknowns: check for data quality, represent un-
certainty in the data, design visualizations so that users can
perform certain analytical tasks, etc. We argue that it is
also equally necessary to analyze what are the unknown un-
knowns: what effects the progressive data transformation
in the visualization pipeline has on the artifacts produced

on the screen and their subsequent perceptual implications.
This necessitates a measurement framework for visualization
that tracks the data through the pipeline onto the screen,
and ultimately all the way into the user’s mind (Figure 1).
Once we have a clearer understanding of what happens in
the pipeline, as well as how changes affect the results, we can
create visualization tools that adapt to the data, output pa-
rameters like screen size and pixel resolution, and even the
user’s abilities to understand visual representations. This
will enable us to reduce the probability of occurrence of un-
known unknowns by increasing the number of known un-
knowns.

Measuring the results of the visualization process opens up
further possibilities, like privacy protection. By controlling
the loss of information for keeping it at a certain minimum
level, data can be hidden on purpose in order to protect
privacy while still allowing a high level of analytic utility.
We have found the results of privacy-preservation by use
of screen-space metrics to be of much higher utility than
running the data through a conventional anonymization al-
gorithm and visualizing only the results [11]. Privacy preser-
vation is one example, but there are undoubtedly many
other potential uses once the measurement framework is in
place, like in cases of complex analysis scenarios like high-
dimensional and/or time-varying data analysis.

2. KNOWN AND UNKNOWN UNKNOWNS
Exploring unknowns in data is a central part of visual ana-
lytics; in fact, the visual analytics mantra, detecting the ex-
pected, discovering the unexpected [19] is based on the phi-
losophy of there being both known and unknown factors
that analysts encounter during their exploratory data anal-
ysis process: the analysis questions are not always known by
the analysts a priori, but they evolve in the course of their
interactions with the data through its visual representation.

However, the visualization process itself also introduces un-
knowns. Despite the increase in quality and resolution of
computer displays, visualization still works in a space with
a limited number of discrete pixels. Our lack of understand-
ing of how our perceptual system works also constrains our
ability to design effective displays that make the most effec-
tive use of our capabilities.

Such unknown unknowns in the screen-space are shown in
Figure 2. How much difference in value is represented by
a single pixel in a bar chart? (Figure 2(a)) What if the
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Figure 1: The conventional visualization pipeline (gray) augmented with a feedback loop (red) from the
human-side to the machine-side for making visual representations better informed about visual uncertainty
and reduce the number of unknown unknowns from a visualization designer’s point-of-view.

data is depicted by angle, like in a pie chart? What about
color? In the case of more complex visualization techniques
like parallel coordinates, are there hidden lines behind those
that are visible between an axis pair? (Figure 2(b)) How
many lines coincide in a particular point on an axis, or on
the same line between two axes?

While the first case is an encoding problem due to the vi-
sual mapping, the second case is a decoding or perception
problem on the human side. In the latter case, although the
information is fully encoded, it cannot be effectively com-
municated to the human mind. While the encoding side is
a machine-only process, decoding involves both the human
and the machine. Thus there is a need to integrate the hu-
man side implications with the machine-side processes into
a holistic framework.

We achieve this by extending the Chi model [7] of the visual-
ization pipeline (Figure 1) by including the perception and
cognition stages: data mapping and visual mapping con-
stitute the encoding stages on the machine-side, while per-
ception and cognition constitute the decoding stages on the
human side of the pipeline. Then we add a feedback loop
that is informed about visual uncertainty [9] and can be used
to measure visual representations according to he different
levels of uncertainty in the screen-space.

Visual uncertainty takes into account the known and un-
known unknowns that stem from the visualization process
itself, rather than being present in the data. In previous
work we have presented a taxonomy of the various sources,
causes and effects of visual uncertainty in parallel coordi-
nates [9].

Measures about visual uncertainty can be used to subse-
quently optimize the visual representation. Thus the data
is followed through the pipeline, the different characteristics
of end product is measured and fed back for modifying the
earlier stages. This is similar to most engineering systems

(a) How much difference in value is rep-
resented by a single pixel in a bar chart?

ground'truth'

(b) Are there hidden lines behind those
that are visible between an axis pair in
parallel coordinates?

Figure 2: Examples of unknown unknowns in visu-
alization: unknown unknown can be both an encod-
ing problem as in case of bar charts and a decoding
problem as in case of parallel coordinates.



where the feedback is used to adjust the output. Our aug-
mented visualization pipeline is similar in principle, to the
one proposed by Van Wijk [20]. The important distinction
is the characteristic of the feedback loop. In our case the
feedback loop is used by the visualization designer to build
better visual representations through controlled rendering
and informed interaction design. In Van Wijk’s model, the
feedback loop is used by the analyst, based on his perception
of the data, to build different representations of the data.
Although both are manipulating visual representations, our
model uses quantifiable means based on causes and effects of
visual uncertainty, and therefore can be modelled and gener-
alized as the basic principles of uncertainty are not affected
by the subjectiveness of human judgement.

3. MEASURING VISUALIZATION
Several authors have advocated the need of measuring visual
representations through quantitative metrics [2, 17]. This is
a hard problem, because the representation has to be not
only effective in terms of encoding data properties, but it
also has to be efficient in terms of the decoding aspect, that
is, communicating the nature of those properties to the end
user. Freitas et al. [12] advocate metrics for general cate-
gories like presentation of the data and interaction with it.
We feel the quest for useful metrics needs to be driven by
more fine-grained analysis of what can be quantified and
why, how much can be quantified and whether those ade-
quately address both the purposes of encoding and decoding
of the data within the visualization pipeline. In this section,
we analyze some of the essential characteristics of metrics
related to visual uncertainty, that have been proposed in
the literature, and those that are needed to be developed to
further reduce the number of unknowns in the screen-space.

Sensitivity Analysis Metrics: Visualization of large, high-
dimensional data almost always involves information loss
due to the disparity between number of dimensions and data
points and the limited number of screen pixels. In most ap-
plications, this loss is unintended [26], as there is degrada-
tion of data fidelity and visual quality. Understanding what
change in the data will have a visible effect on screen and
which won’t (Figure 2(a)) is critical feedback for the user to
know which conclusions can be drawn from a display and
which ones require additional views.

The artifacts produced due to the disparity between data
and display resolution can be measured by metrics based on
information theory [23] and metrics for abstraction qual-
ity [18]. Effect of dimensionality reduction, if quantified
through metrics, can also convey the amount of informa-
tion loss [15]. These measures are task-independent, helping
the analysts build their trust in the visual information that
they perceive. Besides resolution, there can also be metrics
for measuring the effect of the choice of linear or non-linear
scale and the effect of outliers on the visual representation.
For visual variables like shape and color, metrics based on
the degree of distortion in the screen-space or distinguisha-
bility can be developed. Though the current literature on
visual quality measures takes some this aspects into account,
we still lack the framework for a systematic definition and
evaluation of the metrics. A generalization of the visual un-
certainty taxonomy for different visual variables can help
bridge this gap by facilitating the conceptualization, design,

and evaluation of both encoding and decoding metrics.

Pixel-based Metrics: In many visualization designs, the
first step to reduce the information overload for the analyst
is to present a succinct overview of the data with visual cues
that convey the patterns that pop out. Thus, quantifying
the visual information content at the macroscopic level is
also important, especially in situations where modelling the
tasks is not straightforward. In that case, the best solu-
tion is to try and quantify the uncertainty at a higher level
of granularity, so that the analyst is aware of the unknown
unknowns, which in this case are potentially interesting pat-
terns.

Keim at al. were among the first ones to propose pixel-based
metrics [16]. Pixel-based entropy, where the pixels them-
selves have been considered as random variables, has been
used to control the transparency [10]. Chen and Jänicke
have shown how different information-theoretic concepts like
entropy and mutual information can be used at different
stages of the visualization pipeline [6]. Dimensions in the
screen-space when considered as random variables, the prob-
ability of intersection of a record with pixel bin can be used
as a basis for computing uncertainty in the screen-space
based on Shannon’s entropy.

Visualization leverages the pre-attentive processing capabil-
ities of human beings. Different properties of color, like hue,
luminance, saturation, etc., has been used successfully for
modelling different properties of the data [21] Measuring vi-
sual distinctiveness with respect to the use of color or the
semantics of color with respect to the data properties is still
an open area of research.

Feature-preserving Metrics: Conveying patterns repre-
senting semantics of the data attributes is the primary goal
of designing visual representations. In recent times, there
have been several efforts to quantify screen-space informa-
tion with respect to the visual structures. While some of
them like Scagnostics [22] have been motivated solely by
the structures that convey data properties, some others like
Pargnostics have tried to bridge the gap between visual
structures and user perception by taking Gestalt properties
into account. Many of these metrics are task-independent
and can be used to provide visual cues for facilitating the
pre-attentive processing on the analysts’ part. A problem in
the current visualization literature is that most of these met-
rics are termed as visual quality metrics, without a proper
definition of the latter. Does quality mean encoding quality?
Or does it mean improving decoding capabilities of humans?
Or does it take both into account. A survey of the current
literature shows that most metrics have focusses mostly on
encoding, while decoding is only treated implicitly.

There are two concepts that can help bridge the encoding
and decoding sides of visualization. Saliency and novelty
is one of them. Capturing saliency, i.e. perceptual promi-
nence of patterns, and novelty, i.e. uniqueness of informa-
tion, with the help of information-theoretic metrics have
been suggested by Chen[5] and promises to be an interesting
direction. Visual uncertainty, as we have mentioned earlier,
also encompasses both encoding and decoding aspects of the
data transformation. For example, identity and traceability



metrics can help quantify clutter, pattern complexity met-
rics can describe the different visual features. Thus, met-
rics based on the uncertainty taxonomy can help bridge the
screen-space properties and the human-side implications of
visual design.

Privacy-aware Metrics: Dealing with sensitive data has
so far been an open area of research. To the best of our
knowledge, prior to our work [11], no previous research ex-
isted that proposes a privacy-preserving visualization tech-
nique and the only instance we are aware of uses graph-based
abstraction of web data for privacy-preserving manifold vi-
sualization [25].

Visualization techniques currently have an underlying as-
sumption that there is unrestricted access to data. In reality,
access to data in many cases is restricted to protect sensitive
information from being leaked. There are legal regulations
like the Health Insurance Portability and Accountability Act
(HIPAA) in the United States that regulate disclosure of pri-
vate data. We have shown that adaptation of screen-space
metrics based on privacy constraints enable us in achieving
more usable privacy-preservation in the screen-space than
when visualization is used for displaying the anonymization
results after applying data-based metrics.

However, the degree of stability of the privacy-preserving
visualizations with respect to attacks by malicious users
through use of interactions, still needs to be investigated.
There is also the bigger question of the trade-off between
privacy and utility as there is significant information loss
for hiding sensitive data. Thus, the treatment of unknowns
has to be carefully considered based on both privacy and
utility metrics. To address these issues, we are currently
working on metrics for evaluating privacy-preserving visual
representations based on their privacy-guarantee and loss of
utility. The ultimate goal is direction is to design an opti-
mization function that balances the privacy and utility of
the application.

4. RESEARCH DIRECTIONS
Quantifying visual representations by controlling the data
flow and its artifacts within the pipeline can help the visu-
alization designer by considering different options based on
the output of the metrics. In this section we outline some
of the research directions, which can be facilitated by our
ability to measure the impact of data transformation steps
in the pipeline.

Data Fidelity Vs Perception: Perceptually beneficial
designs do not always result in high data fidelity. Some-
times, certain design choices may motivated by perception,
but the results can be counter-intuitive, as shown by a re-
cent study of cluster-based variants of parallel coordinates,
which shows that some of them perform worse than the ordi-
nary line-based parallel coordinates [14]. This is mainly due
to the fact that the patterns get distorted due to the pre-
processing steps and therefore fidelity of the representation
is affected. The fact that high data fidelity do not always
benefit perception, is easily conceivable in visualization. In
case of large data points, we might achieve high data fidelity
by mapping all data points on screen, but would be percep-
tually ineffective owing to clutter. In that case, although

encoding uncertainty is minimized, those due to decoding
are not addressed. We believe,using visual representation
metrics, these trade-offs can be quantified and the findings
will be complementary to user studies, which are generally
expensive and time-consuming to conduct.

Choice of visual variables: The smallest indivisible unit
of all visualizations are the visual variables. While there has
been some pioneering work involving the type and catego-
rization of visual variables and their design implications [1,
8, 3], we still lack a proper understanding of the percep-
tual implications of the selection of visual variables for high-
dimensional data analysis. While design choices and their
motivations exist sporadically in different research papers,
there is a dearth of a framework for their evaluation and
comparison. Moreover, perception research [13] has shown
that visual variables are not processed independently, but in
parallel. Since encoding of high-dimensional data involves
multiple visual variables, an interesting problem is how to
quantify the additive affect of the visual uncertainty effected
by the different variables. When the different uncertainty
components are quantified, along with their additive affect,
that will enable visualization designers with more informed
design choices with respect to selection of visual variables.

Interaction Design: In interactive visualization, different
user interaction mechanisms help maximize data fidelity.
For example, zooming helps in viewing the data at multi-
ple resolutions and dimension reordering (in case of paral-
lel coordinates) helps in get different perspectives on the
multi-dimensional relationships. On the other hand, when
there is inherent loss in precision, or there is uncertainty
due to traceability, when there are unknown unknowns (the
existence of hidden data points), it is difficult to devise in-
teraction techniques to recover such information. Study of
interaction techniques and there effectiveness in the realm of
visualization has received much less attention. While there
has been recent efforts [24] to bridge the machine and hu-
man side of interaction, there is still a lack of knowledge
on how visual representations and interaction complement
each other for analytical tasks. One application of the met-
rics is to study how interaction techniques can be better in-
formed about the causes and effects of uncertainty that can
be reduced, thereby leading the development of an effective
user-centric visualization optimization model.

5. CONCLUSION
Visualization has so far mostly been concerned with the for-
ward direction through the pipeline: from the data through
the transformation stages to the screen. In order to bet-
ter control the visualization output and use, and control the
unknowns on the screen, we need to close the loop by pro-
viding information about the result of the process back to
the pipeline. This has to include not only the computational
side, though, but also the human side. After all, the best
image is still useless if it is not a depiction of the data a
person can read and understand.
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